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Abstract

Quantum-thermal fluctuations of electromagnetic waves are the cornerstone
of quantum statistics and inherent to phenomena such as thermal radiation
and van der Waals forces. Although the principles are found in elementary
texts, recent experimental and technological advances make it necessary to
come to terms with counterintuitive consequences at short scales—the so-
called near-field regime. We focus on three manifestations: (a) The Stefan–
Boltzmann law describes radiation from macroscopic bodies but fails for
small objects. (b) The heat transfer between two bodies at close proximity
is dominated by evanescent waves and can be orders of magnitude larger
than the classical (propagating) contribution. (c) Casimir forces, dominant
at submicron separation, are not sufficiently explored for objects at different
temperatures (at least experimentally). We explore these phenomena using
fluctuational quantum electrodynamics (QED), introduced by Rytov in the
1950s, combined with scattering formalisms. This enables investigation of
different material properties, shapes, separations, and arrangements.
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Blackbody: A body
with emissivity of
unity, marking the
maximal value for
planar surfaces

Skin depth, δ:
Length scale of
damping of waves
inside matter

1. INTRODUCTION

The beginnings of quantum mechanics can be traced back to the introduction of Planck’s constant
(� = h/2π ) for describing the spectrum of blackbody radiation at a given temperature T (1).
Planck’s law then leads to the well-known Stefan–Boltzmann law (2) for radiated power (∝ σ T 4,
where σ is the Stefan–Boltzmann constant), and in turn to radiative heat transfer between objects at
different temperatures [∝ σ (T 4

1 −T 4
2 )]. To first approximation, everyday matter is held together by

the fluctuating electromagnetic (EM) fields between (on average) neutral objects. At the atomic
scale, this attractive interaction appears in the guises of van der Waals, Keesom, Debye, and
London forces (3). At larger scales, the collective behavior of condensed atoms is better formulated
in terms of dielectric properties. In 1948, Casimir computed the force between two perfectly
conducting parallel plates that also arises due to the quantum fluctuations of the EM waves in
the intervening vacuum (or, equivalently, due to the charge and current fluctuations in the plates)
(4). This calculation was extended by Lifshitz to dielectric plates, accounting for the fluctuating
currents in the media (5). Typically, at small separations quantum (zero-point) fluctuations shape
the force, whereas at separations large compared to the thermal wavelength λT = �c /(2πkB T )
(approximately 1.2 µm at room temperature T = 300 K), thermal effects dominate and give rise
to equilibrium or nonequilibrium Casimir forces (5–7).

Over the past two decades, there has been considerable progress in precision measurements of
heat transfer and Casimir forces at submicron scale (8).1 This growing interest can be attributed to
the fact that heat transfer measurements are directly connected to scanning tunneling microscopy
and scanning thermal microscopy, under ultra-high vacuum conditions (9, 10), whereas Casimir
forces must be accounted for in the fabrication of micro- and nanoelectromechanical devices
actuated by electrical bias (where this force is dominant). Thus, developing theoretical tools
that allow treatment of systems out of thermal equilibrium is of particular relevance. Unlike the
equilibrium case, concepts such as entropy and Helmholtz free energy (containing information
about forces and torques) cannot be applied to systems out of thermal equilibrium. One approach
is to apply the formalism of fluctuational electrodynamics (FE) introduced by Rytov (11) in the
1950s (12, 13). As discussed in Section 2, Rytov’s formalism is based on the assumption of local
equilibrium for each object and characterized by a temperature and dielectric response. The study
of multiple objects of different shapes and material properties can be achieved by use of scattering
methods (14–17), as explored in Section 3. Merging Rytov and scattering formalisms enables
compactly representing radiation and forces in terms of scattering operators of the individual
objects (14–17) as demonstrated in Section 4. Several applications of the results demonstrating the
importance of size, shape, and geometry are provided in Section 5. Overall, the goal of this review
is to illustrate the following novel twists on textbook results for heat and force, as summarized in
Figure 1:

1. Heat radiation by objects with sizes smaller or comparable with the thermal wavelength is
not accurately described by the Stefan–Boltzmann law. This occurs owing to interference
effects between the object and the emitted radiation, such that its emissivity and absorptivity
depend sensitively on its size and shape. Additionally, if the object is smaller than the pene-
tration (skin) depth, the emitted power is proportional to the object’s volume rather than its
surface area. For example, Figure 1a depicts radiation from a silica nanofiber of diameter
500 nm; it displays good agreement together with the prediction of Equation 38 (below),
unlike a naive computation using the Stefan–Boltzmann law (also shown in the figure).

1Parts of this review are taken with permission from the doctoral thesis of Dr. V.A. Golyk (8).
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Figure 1
(a) Thermal radiation from a silica nanofiber (diameter 500 nm) from Reference 18, measured through cooling rates of the fiber; green
bands are predictions from Planck’s law, purple bands from Equation 38. The width of the bands reflects uncertainty in the fiber’s
dielectric properties. Adapted from Reference 18 with permission. (b) Heat transfer from a heated glass bead (blue circles and violet
triangles refer to diameters of 100 and 50 microns, respectively) to a flat glass surface (from Reference 19) exceeds the Stefan–
Boltzmann law (solid line) by orders of magnitude at separations below 0.1 micron. Adapted from Reference 19 with permission. (c) The
equilibrium Casimir force between a corrugated surface and a corrugated sphere (20) is well described by a corresponding theory (solid
line). Adapted from Reference 20 with permission. Abbreviations: AOM, acousto-optic modulator; DM, dichroic mirror; FBG, fiber
Bragg-grating; PD, photodiode; PFA, proximity force approximation.
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Macroscopic bodies:
Radiate proportional
to their surface area

Theoretical studies of these effects have been carried out for spheres, plates, and cylinders2

with the scattering formalism (11, 21–27). Recent studies on superscattering properties of
subwavelength nanostructures (e.g., nanorods) (28) make such systems potential candidates
for efficient heat transfer applications.

2. Heat transfer between multiple objects is further complicated by the appearance of another
scale, their separation, yielding nontrivial effects if they are smaller or comparable with the
thermal wavelength. Indeed, over 40 years ago Polder & van Hove used FE to predict that
radiative heat transfer between objects separated by a vacuum gap can exceed the blackbody
limit (29) due to evanescent EM fields decaying exponentially into the vacuum. After the
pioneering experiments in the late 1960s and early 1970s (30, 31), the enhancement of
heat transfer in the near-field regime (generally denoting separations small compared to the
thermal wavelength) has only recently been conclusively verified experimentally (19, 32–37).
The results of one such experiment are depicted in Figure 1b. Theoretically, heat transfer
has been considered for a limited number of shapes: parallel plates (9, 29, 38, 39), a dipole
or sphere in front of a plate (24, 40, 41), two dipoles or spheres (40, 42, 43), and a cone in
front of a plate (44). The scattering formalism has been successfully exploited (6, 11, 17,
24, 45–47) in these contexts, using powerful numerical techniques (44, 48, 49) for arbitrary
geometries and analytical computations for planar, cylindrical, spherical, and ellipsoidal cases
(50, 51).

3. Casimir forces in equilibrium have been the subject of considerable theoretical investi-
gation and were finally confronted with several high-precision experiments in the 1990s
(52–54). The interested reader is referred to the extensive literature on the subject, a sam-
pling of which is in References 3 and 55–58. The bottom row of Figure 1 depicts a recent
example of Casimir force measurement between a corrugated surface and a corrugated
sphere (20). Even for this complicated geometry, precise comparisons between theory and
experiment are now possible. There have been comparatively few studies of the Casimir
force between objects at different temperatures. The force due to radiation pressure at
large distances is modified by near-field effects at separations less than the thermal wave-
length. Nonequilibrium forces were theoretically predicted, initially between two plates or
between a plate and an atom (13, 59, 60), and were later extended to other shapes with
the scattering formalism (17, 45, 47). There has so far been only one experiment on the
Casimir-Lifshitz force out of equilibrium (61) involving an ultracold atomic cloud at a
distance of a few microns from a dielectric substrate. It is hoped that there will be fur-
ther high-precision experiments of nonequilibrium forces between solid objects, and indeed
there has been a proposal (62–65) to employ differential measurements (66, 67) to this
end.

2. FLUCTUATIONAL ELECTRODYNAMICS

The goal of FE is to study the phenomena originating from fluctuations of the EM field in
macroscopic (globally neutral) bodies, importantly in the near-field regime of small distances. A
first-principle analysis starting from the known quantum mechanical interactions of the individual
atoms comprising the two bodies is feasible only for rarefied objects. The microscopic approach

2Although the results are exact for plates and spheres, the radiation by a cylinder is obtained within certain approximations
(21–23).
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becomes unpractical for macroscopic bodies, owing to complicated inductive many-body effects
that arise for particle densities characteristic of condensed matter. Indeed, for separations much
larger than interatomic distances, a continuum description is appropriate, and interactions can
be regarded as occurring through the always present fluctuating EM field in the interior of ab-
sorbing media as a result of the endless quantum and thermal motions of its constituent charges.
This field is not simply confined to the interior of the bodies but stretches out well beyond,
partly in the form of propagating waves and partly as exponentially decaying evanescent waves.
Consequently, absorbing bodies are surrounded by an envelope of EM fluctuations. When two
or more bodies are in close proximity, their EM envelopes overlap mediating energy or mo-
mentum transfer between them, even in the absence of direct physical contact. For computing
interactions, the relevant wavelengths of the fluctuating EM field should be comparable with
macroscopic scales and separation, and thus a description in terms of macroscopic EM features
of the bodies should be feasible. The macroscopic approach outlined here has a large degree
of generality: It naturally embodies thermal effects as well as retardation phenomena associated
with the finite speed of light. As a check, the method should (and does) reproduce results ob-
tained by considering quantum mechanical interactions of individual atoms, in the limit of dilute
media.

To determine the statistical features of the EM field surrounding an absorbing body, Rytov
(11, 68) postulated that the fluctuations are sourced by randomly fluctuating currents of density
j(r, t) in the interior of the body. Physically, the current j(r, t) originates from the quantum and
thermal random motions of the charges that constitute the body, i.e., conduction electrons in a
conductor, bound electrons in a dielectric, or ions in a polar dielectric. The random field j(r, t) is
analogous to the random force in the theory of Brownian motion. Consistent with the macroscopic
character of the theory, it is assumed that the EM field generated by the random current obeys the
macroscopic classical Maxwell’s equations, which for a monochromatic field (with time dependence
proportional to e−iωt) in a dielectric, nonmagnetic inhomogeneous medium are

∇ × E(r, ω) = i
ω

c
H(r, ω), (1)

∇ × H(r, ω) = −i ε(r, ω)
ω

c
E(r, ω) + 4π

c
j(r, ω), (2)

where ε(r, ω) is the complex electric permittivity of the medium. The above equations hold in the
interior of each body and must be supplemented with the usual boundary conditions on the fields
E(r, ω) and H(r, ω) on the surfaces of the bodies. The presence of the random source j(r, ω) gives
to Equation 2 the character of a Langevin equation for the EM field. The random current has
zero mean, 〈j(r, ω)〉 = 0, and its statistical properties are described by its two-point correlation
function, providing the (quantum and thermal) average of the product of components of j(r, ω)
at two different points r and r′ inside the body. By the very nature of the macroscopic approach,
in which atomic distances are considered to be negligibly small, this correlation has the form of a
delta function δ(r − r′). Thus, following Rytov, the current correlator is

〈
j i (r, ω) j ∗

k (r′, ω′)
〉 = �ω2

2
coth

(
�ω

2kB T

)
Im ε(r, ω)δikδ(r − r′)δ(ω − ω′). (3)

Here, i and k label vector components, and T is the temperature. Because in quantum theory the
current density is an operator, the correlator is more precisely the average of the symmetrized
product of the components of the current operator. Equation 3 is a form of the fluctuation dissi-
pation theorem (69), relating fluctuations of the currents to the dissipative response of the system,
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represented by the dielectric function ε(r, ω). The identity,

1
2

�ω coth
(

�ω

2kB T

)
= �ω

[
1
2

+ 1
exp(�ω/kB T ) − 1

]
, (4)

recasts the correlator in Equation 3 as the sum of a purely quantum contribution, represented
by the first term between the brackets, and a thermal contribution that is proportional to the
Bose-Einstein average occupation.

The EM field outside the body can be obtained by solving Maxwell Equation 2, with j(r, ω) as
a source, using the Green’s function formalism: The dyadic Green’s function Gik(ω; r, r′) gives the
electric field Ei (r, ω) at point r, generated by a point-like current source at the point r′ inside the
dielectric body. To preserve causality, Gik(ω; r, r′) is subjected to retarded boundary conditions.
It is worth pointing out that the Green’s function automatically takes into account nonadditive
many-body effects associated with the induced currents caused by the presence of the point-like
source at r′. Using the Green’s function, the electric field generated by the continuous distribution
of currents is expressed as:

Ei (r, ω) = 4π i ω
c 2

∫
d3r′Gik(ω; r, r′) jk(r′, ω). (5)

Of course, since the random current has zero mean, the average electric field vanishes. However,
the observables of interest are quadratic in the field components. For example, the force acting
on a body is obtained by integrating the Maxwell tensor Ti j over a closed surface drawn in the
empty space outside the body and enclosing the body in its interior, whereas the radiated power
received by the body is obtained by integrating over such a surface with the Poynting vector S.
The average value of any quadratic observable in the EM field can be computed starting from
the correlator of the electric field 〈Ei (r, t)E j (r′, t′)〉 (the first Maxwell equation relates correlators
involving the magnetic field to those from the electric field by suitable curl operations). It follows
from Equations 3 and 5 that the Fourier transform of 〈Ei (r, t)E j (r′, t′)〉 does not vanish and has
the expression

〈
Ei (r, ω)E∗

j (r
′, ω′)

〉 = 8π2
�ω4

c 4
coth

(
�ω

2kB T

)
δ(ω − ω′)

×
∫

d3r ′′Gik(ω; r, r ′′) Im ε(ω, r ′′)G∗
kj (ω; r ′′, r′). (6)

2.1. Systems in Global Thermal Equilibrium

When the system is in global thermal equilibrium at a temperature T, the integral over space on
the right-hand side of Equation 6 can be expressed in terms of the imaginary part of the Green’s
function, using the important identity

ω2

c 2

∫
d3r ′′Gik(ω; r, r′′) Im ε(ω, r ′′)G∗

kj (ω; r ′′, r′) = Im Gi j (ω; r, r′). (7)

Inserting the above relation into the right-hand side of Equation 6 leads to

〈
Ei (r, ω)E∗

j (r
′, ω′)

〉 = 8π2
�ω2

c 2
coth

(
�ω

2kB T

)
δ(ω − ω′) Im Gi j (ω; r, r′). (8)

Equation 8 is remarkable, indicating that in thermal equilibrium the correlator of the electric
field at points outside the bodies is determined solely from knowledge of the Green’s function in
their exterior. Indeed, it has been shown (70, 71) that Equation 8 can be directly obtained from
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the fluctuation-dissipation theorem by regarding the Green’s function itself as a response of the
system to external sources outside the bodies, without resorting to hypothetical random currents
in their interior. Another important feature of the equilibrium is that the retarded Green’s func-
tion of a passive medium is analytical in the upper complex frequency plane (72). By virtue of this
analyticity, the equal-time correlator of the electric field

〈
Ei (r, t)E j (r′, t)

〉
can be expressed, after

a Wick-rotation of the frequency axis, as a sum over the imaginary poles ωn = 2π inkB T/� ≡
iξn, for n = 0, 1, . . . (the so-called Matsubara frequencies) of the hyperbolic cotangent in
Equation 8:

〈
Ei (r, t)E j (r′, t)

〉 = 8πkB T
c 2

′∑
n

ξ 2
nGi j (iξn; r, r′), (9)

where the prime implies that the n = 0 term has to be taken with weight 1/2. As Green’s functions
are much better behaved along the imaginary axis than along the real frequency axis, Equation 9
is considerably easier to estimate numerically in practical applications.

Equation 8 shows how the spectral density of the fluctuating EM field is modified by the
presence of one or more bodies, and in principle it allows determination of the fluctuation of
the electric field for any number of dielectric bodies of any shape in global thermal equilibrium.
The difficulty resides of course in the computation of the Green’s function Gi j (ω; r, r′). For simple
geometries and/or arrangements of the bodies, the Green’s function can be found analytically, but
in general its computation is hard and can be only achieved numerically. An important conclusion
about the influence of material properties on equilibrium field correlators, and hence the observ-
ables computed from them, can be deduced from the imaginary-frequency formula in Equation 9:
Since the electric permittivity ε(iξ ) of all causal materials is positive and monotonically decreas-
ing along the imaginary frequency (72), equilibrium values of field correlators are substantially
insensitive to the structure of the resonances that the dielectric function may display for real
frequencies.

The simplest situation is that of an infinite homogeneous dielectric medium (72). The Green’s
function G(0)

i j (ω; r, r′) in this case is known analytically, and the correlators of the EM field can
be obtained in closed form. In the limit of a transparent medium, corresponding to Im ε → 0
(with Re ε > 0), it is possible to verify that the spectral decomposition of the EM energy density
computed with Equation 8 reproduces, after subtraction of the unphysical contribution of zero-
point fluctuations, the spectral decomposition of the blackbody radiation in a transparent medium.
In confined geometries, Equation 8 can be used to study how the blackbody spectrum is modified
by the shape and material properties of the cavity walls, influencing the spectral lines and lifetimes
of atoms placed inside the cavity (70).

An important application of the equilibrium formulae in Equations 8 and 9 is to the Casimir
effect (4). This is the force between two neutral macroscopic polarizable bodies that originates from
quantum and thermal fluctuations of the EM field in the region of space bounded by the surfaces
of the two bodies. As one of the rare manifestations of quantum mechanics at the macroscopic
domain, like superconductivity or superfluidity, this force has attracted considerable interest, also
in view of its potential applications to nanotechnology, condensed matter physics, gravitation,
and cosmology (see, e.g., reviews in References 3, 12, 55, 56, 58). In his seminal work Casimir
computed the force FC between two neutral perfectly conducting plane parallel plates of area A
at a distance d in vacuum; by carefully summing the zero-point energies of the EM modes in the
empty space between them, he found

FC = π2
�c

240
A
d 4

. (10)
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The presence of Planck’s constant clearly points to the quantum origin of the Casimir force.
In the framework of FE the Casimir force is estimated by integrating the Maxwell stress tensor
across a closed surface S drawn in a vacuum and surrounding one of the two bodies. This in turn
involves evaluating an integral on S of field correlators evaluated at coinciding points r = r′ along
S. Because the field correlators diverge at coincidence points, as the Green’s function G(ω; r, r′)
diverges in such limit, it is not immediately clear if a well-defined force can be obtained. That this
is indeed so is recognized by considering the following decomposition of the Green’s function at
points outside the bodies:

Gi j (ω; r, r′) = G(0)
i j (ω; r, r′) + G(bodies)

i j (ω; r, r′), (11)

where as before G(0)
i j (ω; r, r′) represents the free Green’s function in infinite space, and

G(bodies)
i j (ω; r, r′) is the contribution due to the presence of the bodies. In the coincidence limit

r → r′, only the free space Green’s function diverges, whereas the body Green’s function
G(bodies)

i j (ω; r, r′) attains a finite limit (17). It is clear physically that the ill-defined contribution
to the stress tensor originating from the free-space Green’s function, being independent of the
positions and material properties of the bodies, can be disregarded altogether, and that the Casimir
force is determined solely by the well-defined stresses associated with the body Green’s function.
A computation of the Casimir force along these lines was first performed by Lifshitz (5) for
the case of two plane-parallel semi-infinite dielectric slabs. In this simple geometry, the body
Green’s function G(bodies)

i j (ω; r, r′) can be easily determined analytically by working in a basis of
plane waves propagating in the plane of the slab surfaces (17), and it can be expressed in terms
of the Fresnel reflection coefficients of the slabs (73). Lifshitz’s formula enables computing the
influence of real material properties of the bounding plates, like their finite reflectivity and tem-
perature, and is routinely used today to interpret modern precision measurements of the Casimir
force.

A major unresolved problem in Casimir physics concerns the magnitude of the thermal contri-
bution to the Casimir force between two conducting plates. In essence the puzzle is about the role
played by relaxation properties of conduction electrons in the Lifshitz theory (56, 74). It turns out
that Lifshitz’s formula predicts significantly different magnitudes for the thermal force depending
on whether the optical data of the conductor are extrapolated toward zero frequency on the basis
of the Drude model (which does take dissipation into account) or instead by the dissipationless
plasma model of IR optics. In addition to predicting different magnitudes for the thermal force,
it has been shown that the two prescriptions have important thermodynamic consequences: Al-
though the Drude prescription leads to a violation of Nernst heat theorem (in the idealized case
of two conducting plates with a perfect crystal structure) (75), the plasma prescription violates
the Bohr-van Leeuwen theorem of classical statistical physics (76, 77). It has been suggested in
Reference 78 that the reported violation of the Nernst heat theorem by Drude metals may be
due to a glassy state of quasi-static Foucault currents in Drude metals at low temperatures, ren-
dering the Nernst theorem inapplicable. The experimental situation is contradictory: Although
several small-distance experiments (79–81) probing separations below one micron appear to be in
agreement with the plasma model and to rule out the larger thermal force predicted by the Drude
model, a recent large-distance experiment in the wide range from 0.7 to 7.3 µm (82) has been
interpreted as being in agreement with the Drude model. A novel experimental scheme based on
differential Casimir force measurements (62–64) may lead to a definitive clarification of the prob-
lem. A very recent experiment (66, 67) based on this scheme, utilizing samples with alternating
Au-Ni regions, appears to be very encouraging.

126 Bimonte et al.

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
7.

8:
11

9-
14

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

75
.1

04
.6

5.
17

2 
on

 0
3/

03
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CO08CH07-Kardar ARI 21 February 2017 8:55

2.2. Systems Out of Thermal Equilbrium

For out of equilibrium situations in which we can assign to each body (in its rest frame) a distinct
temperature T , the basic assumption of FE (11, 68) is that current fluctuations in each body
still satisfy Equation 3. Electric field fluctuations outside the bodies are obtained by summing
contributions from the different objects, generalizing Equation 6. The technical difficulty is in
expressing the Green’s function for the collection of bodies, in terms of their individual Green’s
functions. We note that when studying problems of heat transfer, the contribution of vacuum
quantum fluctuations (corresponding to the first term on the right-hand side of Equation 4) can
be ignored altogether because, being independent of the bodies’ temperatures, vacuum fluctuations
contribute nothing to energy transfers.

The problem of radiative heat transfer for two plane-parallel homogeneous dielectric slabs at
(arbitrary) different temperatures was first studied by Polder & van Hove, using Rytov theory (29),
extending a previous investigation by Rytov of the less realistic case of a heated dielectric slab facing
an almost perfect mirror at zero temperature (11). The main finding of Polder & van Hove is the
strong increase of radiative heat transfer between two metallic surfaces for gap widths smaller than
the characteristic thermal wavelength λT = �c /(2πkB T ) (λT = 1.2 µm at room temperature).
Subsequent studies by other authors (83) revealed that near-field radiative heat transfer can in
fact be enhanced by several orders of magnitude when the surfaces are covered by adsorbates
or can support low-frequency surface plasmons, via a mechanism of resonant photon tunneling.
The strong increase of the power of radiative transfer at the nanoscale opens up the possibility of
important technological applications including heat-assisted magnetic recording (85), near-field
thermophotovoltaics (86), and lithography (9).

Rytov theory out of thermal equilibrium has been recently used to investigate the Casimir
force between two dielectric slabs at different temperatures in vacuum (13). Out of thermal equi-
librium the Casimir-Lifshitz force displays remarkable features that disappear when the system is
brought to a state of thermal equilibrium. These features originate from a peculiar contribution,
F̄ (neq)(T1, T2), to the nonequilibrium force, which is antisymmetric under an exchange of temper-
atures T1 and T2. Being antisymmetric in the body temperatures, this term can have either sign
and can in principle be harnessed to tune the force both in strength and sign (87) and to realize
self-propelling systems (6) (see Section 5).

3. SCATTERING THEORY

As discussed above, various fluctuation-induced effects can be described within Rytov’s theory
as emerging from fluctuating, random currents inside the bodies. The correlation functions of
these currents is then related by the Green’s function to the corresponding fields from which the
relevant observables such as forces and energy fluxes are obtained. Hence, it is desirable to express
the energy of a system of bodies such that each carries a prescribed charge and current distribution
in terms of these quantities. With this functional, one can then average over random currents to
obtain the free energy or field correlation functions. As we described below, the answer to this is
given by scattering theory.

Before we describe the general scattering approach, it is instructive to look at the energy of two
distant conductors of arbitrary shape. Putting a charge on one conductor changes the potential
of the other by an amount that depends on the geometrical configuration and the individual
capacitances of the conductors. The potential m12 to which conductor 2 is raised when a unit
charge is placed on conductor 1 is known as elastance. Due to Green’s reciprocity theorem, one
has m12 = m21 so that the elastance matrix M = [mαβ ] is symmetric. Because the potentials of the
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conductors are given by [V1, V2] = M [Q1, Q2] in terms of their charges, the electrostatic energy
has the quadratic form E = 1

2 [Q1, Q2]t M [Q1, Q2]. We shall see below that a similar quadratic
form is obtained for the energy of a system of arbitrarily shaped dielectric bodies with (frequency-
dependent) fluctuating currents.

The elastance matrix contains information about the shapes and relative positions of the objects.
Let the two conductors have capacitances C1 and C2 in isolation. When 1 is uncharged, and 2 with
charge Q2 is placed at a distance d (which is assumed to be much larger than the linear dimension
R of the conductors), the potential of 1 is raised to Q2/(4πd ); hence m21 = 1/(4πd ). On the nearer
half of 1 a charge of opposite sign to Q2 and of magnitude C1 Q2/(4πd ) ∼ Q2 R/d is induced (and
an equal charge of equal sign is induced on the remote half ). This leads at 2 to a dipole potential
of the order Q2 R2/d 3 that can be ignored to leading order in R/d . Hence the potential V 2 is not
affected by 1, and we obtain m22 = V 2/Q2 = C−1

2 , and similar for m11, such that the elastance
matrix is

M =
[

C−1
1 (4πd )−1

(4πd )−1 C−1
2

]
. (12)

Note that the self- and mutual capacitances are given by the inverse of the matrix M . This matrix
shows two interesting features. The diagonal elements contain solely information about the shape
of the objects (via their capacitances), whereas the off-diagonal elements depend only on their
relative position.

Now consider the general situation of arbitrarily shaped dielectric bodies that carry fluctuating
currents J j (ω) where j numbers the bodies and ω is the frequency. The equivalent of the capaci-
tance is the scattering amplitude, also known as the T operator (88). It quantifies the fluctuating
currents induced on a body in response to an incident EM field. We briefly review the key results
from scattering theory: The general solution of the wave equation

[H0 − V(ω, x)]E(ω, x) = ω2

c 2
E(ω, x), (13)

with differential and potential operators

H0 = ∇ × ∇×, (14)

V(ω, x) = −I
ω2

c 2
[1 − ε(ω, x)] − ∇ ×

[
1

μ(ω, x)
− 1

]
∇×, (15)

is given by the Lippmann-Schwinger equation

E = E0 + G0VE. (16)

Here G0 is the free EM tensor Green’s function, and the homogeneous solution E0 obeys the
wave equation with V = 0. Iterative substitution for E in Equation 16 leads to

E = E0 + G0VE0 + G0VG0VE − . . . ≡ E0 + G0TE0, (17)

where the T operator is defined as

T = V
I

I − G0V
= VGG

−1
0 , (18)

and G is the Green’s function of the wave equation in Equation 13, given explicitly by

G = G0 + G0TG0. (19)
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We note that T, G0, and G are all functions of frequency ω and nonlocal in space. As can be seen
from expanding T in Equation 18 in a power series, T(ω, x, x′) = 〈x|T(ω)|x′〉 is zero whenever x or
x′ are not located on an object, i.e., where V(ω, x) is zero.

The matrix elements of the T operator are given by the scattering amplitude T in a given
basis, e.g., vector spherical waves. We consider a scattering process in which a regular wave Ereg

α

interacts with a body and scatters outward in the form of an outgoing wave Eout
β . Here α and β

label basis elements. We choose a convenient “scattering origin” inside the body, consistent with
any symmetries of the problem if possible.

To find the field E at a coordinate x far enough outside the body, we employ Equation 17 in
position space and the usual expansion of G0 in terms of regular and outgoing waves,

E(ω, x) = Ereg
α (ω, x) +

∑
β

Eout
β (ω, x)Tβα(ω), (20)

where the scattering amplitude is defined by

Tβα(ω) = i
∫ ∫

Ereg∗
β (ω, x′) · T(ω, x′, x′′)Ereg

α (ω, x′′)dx′dx′′. (21)

In analogy to the electrostatic case in Equation 12, we can now express the kernel of the action
for the fluctuating currents at fixed frequency on an arbitrary number of bodies,

S(ω) = 1
2

J j M j kJk, (22)

in terms of the inverse of the T operators T j of the individual bodies, replacing the inverse
capacitances on the diagonal,

M =

⎡
⎢⎢⎢⎣

−T
−1
1 U

12
U

13 · · ·
U

21 −T
−1
2 U

23 · · ·
· · · · · · · · · · · ·

⎤
⎥⎥⎥⎦ . (23)

In analogy to the electrostatic case, the off-diagonal operators of this kernel describe the
interaction of the currents on different objects. Hence, the operators U

αβ must be related to the
free Green’s function G0. The latter can be expanded as

G0(ω, x, x′) = i
∑

α

{
Eout

α (ω, ξ1, ξ2, ξ3) ⊗ Ereg∗
α (ω, ξ ′

1, ξ ′
2, ξ ′

3) if ξ1(x) > ξ ′
1(x′)

Ereg∗
α (ω, ξ1, ξ2, ξ3) ⊗ Eout

α (ω, ξ ′
1, ξ ′

2, ξ ′
3) if ξ1(x) < ξ ′

1(x′)
, (24)

where one of the spatial coordinates is identified as the “radial” variable and treated differently
from the remaining coordinates. We let ξ1 represent this coordinate and denote the remain-
ing coordinates as ξ2 and ξ3. We introduce the “outgoing” solution in ξ1, which is in the same
scattering channel as the corresponding regular solution but obeys outgoing wave boundary con-
ditions as ξ1 → ∞. It is linearly independent of the regular solution. Because the T opera-
tors for the individual bodies in Equation 23 are defined relative to the basis appropriate for
each body, one has to translate the scattering solution of one body to the basis of the other
body. We assume that all objects are placed outside of each other (see Figure 2b). The outgo-
ing solutions form a complete set independent of the origin used to define the decomposition
into a basis of partial waves. Let {Ereg

β (ω, x j )} be the regular solutions expressed with respect
to the origin of coordinates appropriate to object j , O j . Except in a region that contains the
origin Oi , where Eout

α (ω, xi ) is singular, one can expand an outgoing solution in terms of the
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x i

x j

X ij

Oi

Oj

j3

j3j3j3

j3 T3

j1

j1

T1

Tenv

E = G × j

j2

T2

j2

a b

Figure 2
(a) Fluctuations of the electromagnetic (EM) field outside several bodies, sourced by the fluctuating currents in each body.
(b) Geometry of the configuration of two objects as introduced in Section 3. The dotted lines show surfaces separating the objects on
which the radial variable is constant. The translation vector Xi j = xi − x j = −X j i describes the relative positions of the two origins.
Although the operator formalism is completely general, applicable to any configuration, for objects enclosed by nonoverlapping spheres
or ellipsoids a representation in partial waves is possible.

{Ereg
β (ω, x j )},

Eout
α (ω, xi ) =

∑
β

U
j i
βα(ω, X j i )E

reg
β (ω, x j ), for x /∈ N (Oi ), (25)

where Xi j = −X j i = xi − x j is shown in Figure 2b. Note that xi and x j refer to the same position
in space, x, expressed as the displacement from different origins. Here N (Oi ) is a neighborhood
of the origin Oi . This expansion defines the matrix elements of the operator Uβα in a given basis.
We note that while the operator formalism in terms of G0 and T is fully general, expansion in
partial waves imposes constraints on the relative position of the bodies, see Figure 2b. There must
exist an origin, and a separable coordinate system, so that for all points x in one object and x′ in
another, ξ1(x) is always greater than ξ1(x′), and vice versa. Having ξ1(x) > ξ1(x′) ensures that the
Green’s function is always evaluated by letting x be the argument of the outgoing wave function
and x′ that of the regular wave function. Therefore, any two objects must be separated by a surface
defined by the locations x where ξ1(x) is constant.

This completes the construction of the kernel M which can be viewed in a given basis as the
interaction matrix between multipole moments on the bodies. For a similar, earlier approach based
on a multipole expansion for specific shapes like spheres and cylinders see Reference 89. With
this energy functional for the fluctuating currents on a set of arbitrarily shaped dielectric objects,
the free energy and field correlation functions of the system can be computed by averaging over
the currents with the corresponding Boltzmann weight. The first application of this approach has
been the computation of equilibrium Casimir interaction (14, 16). The Casimir energy can be
written as

E0 = − �c
2π

∫ ∞

0
dκ log Z(κ), (26)

where we have Wick rotated from real to the imaginary frequencies κ , and Z(κ) is the parti-
tion function for the action of Equation 22 for currents. After integrating over the currents, we

130 Bimonte et al.

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
7.

8:
11

9-
14

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

75
.1

04
.6

5.
17

2 
on

 0
3/

03
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CO08CH07-Kardar ARI 21 February 2017 8:55

obtain

E = �c
2π

∫ ∞

0
dκ log det(MM

−1
∞ ), (27)

where M
−1
∞ is a block diagonal matrix diag(T1T2 · · ·). For two objects, the expression simplifies to

E = �c
2π

∫ ∞

0
dκ log det

(
I − T1U

12
T2U

21) . (28)

At nonzero temperature T , the integral �c
2π

∫ ∞
0 dκ is replaced by kB T

∑′
n, where κn = 2πnkB T

�c with
n = 0, 1, 2, 3 . . . is the nth Matsubara frequency. Careful analysis shows that the zero frequency
mode is weighted by 1/2 compared to the rest of the terms in the sum; this modification of the
sum is denoted by a prime on the summation symbol.

The scattering approach presented here builds on a range of previous related work: Scattering
methods were first applied in the parallel plate geometry (73, 90–92), and within a multiple
scattering approach for perfect mirrors of arbitrary shape at large separations (93, 94). The Krein
formula for the density of states has also been employed to relate Casimir interactions to scattering
data (95–102). Closely related path integral methods have been introduced for EM and scalar
Casimir interactions (103–109). Recent progress became practically possible by the introduction
of T-operator-based approaches (110–112), which is closely related to Schwinger’s view of
Casimir forces in terms of current fluctuations (113) with many applications (114–119). More
recently, fully numerical schemes have been shown to be powerful (44, 48, 49), as has a gradient
expansion (120–122) yielding curvature corrections to the proximity force approximation (123)
(Figure 1).

4. MERGING RYTOV AND SCATTERING THEORY

Having set out the elements of scattering theory, in this section we describe how it can be merged
with the Rytov formalism to obtain heat radiation, heat transfer, and (Casimir) interactions for
a set of arbitrary bodies in thermal nonequilibrium. We assume that N dielectric objects, la-
beled by α = 1, . . . , N, kept at time-independent, homogeneous temperatures {Tα}, are placed
into an environment (vacuum) at temperature Tenv. The bodies are characterized by their electric
and magnetic response, ε(ω; r, r′) and μ(ω; r, r′), respectively, which can in general be nonlo-
cal complex tensors, ε(ω; r, r′) = εi j (ω; r, r′), depending on frequency ω. In this nonequilibrium
stationary state, each object is assumed to be at local equilibrium, such that current fluctua-
tions locally satisfy the fluctuation dissipation condition. The general results for heat radiation,
transfer, and force are given by the formulae in the sidebar Trace Formulas. We give below a
compact derivation of these results; the interested reader is referred to Reference 17 for a detailed
exposition.

In equilibrium, interactions (forces and torques) between objects can be obtained from the
dependence on position and orientation of the free energy. There is no corresponding free en-
ergy for computation of nonequilibrium quantities like heat radiation and transfer. Instead, the
correlation function C(r, r′) = [〈Ei (r)E∗

j (r′)〉ω]i , j=1,2,3 is needed to compute the current-averaged
components of the Maxwell tensor. We shall see below that even out of equilibrium C(r, r′) is
a superposition of equilibrium correlation functions, each at the temperature of the body that
generates the corresponding contribution to the total field.

In equilibrium, the field correlations can be expressed as the superposition

C
eq(T ) = a0 Im G +

∑
α

C
sc
α (T ) + C

env(T ), (29)
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with a0 ≡ sgn(ω) 4π�ω2

2c 2 . Here the first term represents the zero-point fluctuations, the sum in the
second term is the radiation coming from the fluctuating sources inside the bodies, and the last
term is the contribution of the environment,

C
env(T ) = −a(T )G Im

[
G

−1
0

]
G

∗, (30)

with

a(T ) ≡ sgn(ω)
8π�ω2

c 2
[exp(�|ω|/kB T ) − 1]−1, (31)

containing the occupation number of modes with frequency ω. In general, C
s c
α (T ) depends on all

objects because the field radiated by body α is scattered by all other bodies. For the moment, we
consider a single body at temperature T in a cold environment and neglect zero-point fluctuations.
Using the scattering formalism, the correlations of the radiated field can be expressed in terms of
the free Green’s function and the body’s T matrix T, as

C
sc,iso
α (T ) = a(T )G0

[
i
2

(T∗ − T) − T Im(G0)T∗
]

G
∗
0. (32)

In the presence of additional objects, the Lippmann-Schwinger equation relates the total field Eα

to the field Eα,iso of object α alone by Eα = OαEα,iso, with the multiple scattering operator

Oα = (1 + G0Tᾱ)
1

1 − G0TαG0Tᾱ

, (33)

that depends also on the T-operator Tᾱ of all other bodies. The final result for the multi-body
correlation function C

sc
α (T ) in Equation 29 is then given by

C
sc
α (Tα) = Oα C

sc,iso
α (Tα) O

†
α. (34)

We can thus express the full correlation function in terms of the free Green’s function and the
T operators. We can further eliminate the environment contribution and obtain the correlation
function as a superposition of the radiation from the bodies at different temperatures Tα as

C
neq[(Tα), Tenv] = C

eq(Tenv) +
∑

α

[
C

sc
α (Tα) − C

sc
α (Tenv)

]
. (35)

With the functions expressed in terms of the T operators, we can compute radiated heat and
forces. The heat H emitted by a body is obtained by integrating the normal component of the
Poynting vector S over a surface  enclosing the body,

H =
∮



S · n, (36)

with S(r) = c
4π

∫ ∞
−∞

dω

2π

〈
E(r) × B∗(r)

〉
ω
. Note that forces on two bodies at different temperatures are

no longer equal and opposite. The force on object α is found from the surface normal component
of the stress tensor σ , integrated over a surface enclosing object α, as

F(α) = Re
∮

α

σ · n, (37)

with σi j = ∫ ∞
−∞

dω

8π2

〈
Ei E∗

j + Bi B∗
j − 1

2

(|E|2 + |B|2) δi j
〉
ω
.

The above basis-independent operator expressions hold for any geometry. For practical com-
putations, the operators have to be represented in a basis of partial waves. The traces of operators
then turn into sums over matrix elements with respect to the partial wave indices. In the sidebar
Trace Formulas, we present the general trace formulas for heat radiation, heat transfer, and forces
both in the operator formalism and a basis of spherical vector waves (17). Note that in the latter
case, the spheres enclosing the bodies cannot overlap (see also Figure 2b).
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TRACE FORMULAS

Below we summarize trace formulas for the various nonequilibrium quantities (17). The expressions are given both
in the general operator notation, and in spherical wave representation in which the T operator and G0 become
(infinitely dimensional) matrices T and U .

Heat Radiation of One Object
The heat emitted by a body with T-matrix T at temperature T is given by (with S = I + 2T )

H = 2�

π

∫ ∞

0
dω

ω

e
�ω

kB T − 1
Tr

[
Im(G0)Im(T) − Im(G0)T Im(G0)T∗] = �

2π

∫
dω

ω

e
�ω

kB T − 1
Tr

(
I − SS†

)
(38)

Heat Transfer Between Two Objects
The radiation emitted by body 1 at temperature T1 and absorbed by body 2 is given by the transfer rate

H (2)
1 = 2�

π

∫ ∞

0
dω

ω

e
�ω

kB T1 − 1
Tr

{[
Im(T2) − T

∗
2 Im(G0)T2

] 1
1 − G0T1G0T2

G0
[
Im(T1) − T1 Im(G0)T∗

1
]
G

∗
0

1
1 − T

∗
2G

∗
0T

∗
1G

∗
0

}

= 2�

π

∫ ∞

0
dω

ω

e
�ω

kB T1 − 1
Tr

[(
T †

2 + T2

2
+ T †

2 T2

)
1

I − UT1UT2
U
(
T †

1 + T1

2
+ T1T †

1

)
1

I − U†T †
2 U†T †

1

U†
]

Nonequilibrium Force Between Two Objects
The total force on body 2 is given by

F(2) = F(2,eq)(Tenv) +
∑

α=1,2

[
F(2)

α (Tα) − F(2)
α (Tenv)

]

where the first term is the usual equilibrium force (14–17) and

F(2)
1 (T ) = 2�

π

∫ ∞

0
dω

1

e
�ω

kB T − 1
Re Tr

{
∇(1 + G0T2)

1
1 − G0T1G0T2

G0
[
Im(T1) − T1Im(G0)T∗

1
]
G

∗
0

1
1 − T

∗
2G

∗
0T

∗
1G

∗
0

T
∗
2

}

= 2�

π

∫ ∞

0
dω

1

e
�ω

kB T − 1
Im Tr

[(
T †

2 p + T †
2 pT2

) 1
I − UT1UT2

U
(
T †

1 + T1

2
+ T1T †

1

)
U† 1

I − T †
2 U†T †

1 U†

]

F(2)
2 (T ) = 2�

π

∫ ∞

0
dω

1

e
�ω

kB T − 1
Re Tr

{
∇(1 + G0T1)

1
1 − G0T2G0T1

G0
[
Im(T2) − T2Im(G0)T∗

2
] 1

1 − G
∗
0T

∗
1G

∗
0T

∗
2

}

= 2�

π

∫ ∞

0
dω

1

e
�ω

kB T − 1
Im Tr

[
(pU T1U + p)

1
I − T2UT1U

(
T †

2 + T2

2
+ T2T †

2

)
1

I − U†T †
1 U†T †

2

]
,

where the translation operator p is defined by −∇dU (d) = pU . The force on body 1 is obtained by exchanging the
indices 1 and 2 in the equations above.
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Thermal wavelength,
λT : The dominant
wavelength in the
Planck radiation
spectrum

5. SIZE, SHAPE, AND GEOMETRY

5.1. Radiation

According to classical theory of blackbody radiation, the thermal emission H of a macroscopic,
isolated object at temperature T is proportional to its surface area A, as (2, 124)

H
A

= σ T 4ε(T ), (39)

with σ = π2k4
B/(60�

3c 2) the Stefan–Boltzmann constant. The emissivity ε is in general a function
of temperature. Equation 39 accurately describes the energy emitted if the object (and its radii of
curvature) is large compared to the emitted wavelengths, centered around the thermal wavelength
λT —in other words when, from the perspective of the wave, the surface is nearly flat. [Note that
we neglect here the issue of view factors, which give a correction to Equation 39 due to shape,
when part of the object’s radiation is reabsorbed by itself (for a surface like in a ring).] Apart from
concavity, Equation 39 turns inaccurate if the size of the object is comparable or small compared
to λT . The radiation can then strongly depend on the materials in combination with shape, as we
aim to demonstrate with two standard examples: a sphere and a cylinder (wire) of infinite length.

We start with a sphere made of glass (specifically, SiO2), which is a good absorbing (and
emitting) material, with otherwise mild optical properties. Its radiation, as a function of radius,
is depicted in Figure 3 (17, 24). For large R, the radiation indeed approaches the value given by
Equation 39, where the emissivity of the glass chosen is ε = 0.735. The important length scale
is indeed λT , so that approach to Equation 39 is observed for R  λT . In the extreme of small
R, the emitted energy is not proportional to surface area A but proportional to volume (note
that the y-axis is normalized by A). This can be understood, as in this limit, the sphere is almost
transparent, so that radiation emitted by any volume element contributes. This is in contrast to
a large sphere, where only volume elements close to the surface contribute, as the emission from
elements deeper inside is reabsorbed before reaching the surface.

Due to the plain optical properties of glass, its radiation in Figure 3 is rather featureless, cross-
ing over between the above two limits. More complex behavior is observed for good conductors
such as gold (17). As seen in Figure 3 the radiation of a gold sphere follows a similar trend for large
R, approaching Equation 39 in the same manner as glass (only with the much smaller emissivity
of ε = 0.0075). For small R, the form is, however, very different compared to glass, and emission
proportional to volume is not observed for any relevant values of R. Instead, for a pronounced
range in R, the emission is proportional to R5, i.e., volume to the power of 5/3. Although the origin
of this dependence is nontrivial (related to the mathematical expansion of the Mie coefficients), the
physical reason for absence of volume scaling is the short skin depth δ: Inside matter, the waves are
damped as a function of position x with ∼e−x/δ , so that emission is dominated by regions within
a width δ from the surface. For glass, typical values for δ (which depends on wavelength) are in
the micron range: Scaling proportional to volume is observed if R is well below such scale. For
gold, waves are damped much quicker, δ is on the order of a few nanometers, and the regime of
volume-emission is shifted to much smaller R (not visible in the graph). Thus, thermal emission
of micron- or nanoscale objects is largely controlled by the length scales λT and δ.

Turning to the cylinder of infinite length, Figure 3 shows the emission of a glass cylinder as
a function of its radius R (24, 125). The curve is very similar to that of a sphere, approaching the
macroscopic law of Equation 39 for R  λT while being proportional to volume for small R.
Also the absolute values are very similar to the sphere, and the mildness of optical properties of
glass is manifested once more by the weak sensitivity to shape. For gold (125), the situation is very
different: While for R  λT sphere and cylinder emit similarly, the curves are quite distinct for
smaller radii. Here, the cylinder emission increases strongly and even exceeds the value of unity;
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Figure 3
Thermal radiation of an isolated sphere (red curves) or cylinder of infinite length (blue), made of glass (SiO2)
or gold, at temperature T = 300 K, as a function of radius R. Horizontal lines on the right show results for
R → ∞, from Equation 39 with emissivities ε = 0.735 for SiO2 and ε = 0.0075 for gold. Curves are
normalized by the blackbody result, where A is the surface area. The experimental setup in the top row of
Figure 1 corresponds to R = 0.5 µm in the upper blue curve. The emitted radiation can be polarized, most
notably for R � λT (not shown) (24, 125). Data taken from References 17, 24, and 125. Bars denoted
“Class.” give the asymptotic value for large R.

i.e., it exceeds the emission of a blackbody. (Although the emissivity of any planar surface is bound
from above by that of a blackbody, the curve in Figure 3 does not violate any fundamental law,
as it describes a body of finite size.) This strong emissivity is remarkable, as, e.g., for R = 10 nm,
the gold cylinder exceeds the gold sphere by a factor ∼105 in terms of emission, so that for gold,
the emitted energy depends strongly on shape.

The experimental setup displayed in Figure 1a (18) consists of an SiO2 nanofiber of radius
500 nm, as in Figure 3. The value of the experimental R is close to the regime where radiation is
proportional to volume, thus distinctly different from the Stefan–Boltzmann law, as observed in
Reference 18. The theoretical prediction in the graph in Figure 1 was obtained with Equation 38.

Finally, we note that the radiation emitted by a cylinder is in general polarized. Regarding
Figure 3, the polarization with electric fields parallel to the cylinder axis is dominant for small R
[for gold the degree of polarization reaches nearly 1 (125)], whereas for R ≈ λT , the perpendicular
component can be stronger in intensity in some cases. This effect has been observed in several
experiments including References 23, 126, and 127.

5.2. Radiative Energy Transfer

Given that radiation from an isolated object is very different from Equation 39, when the object is
small or comparable with the thermal wavelength, it is expected that the radiative energy transfer
between two objects should also be sensitive to their separation relative to λT . Indeed due to near-
field effects heat transfer can be strongly enhanced (29). This is demonstrated in Figure 4 for the
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Figure 4
(a) Heat transfer rate (normalized to the Stefan–Boltzmann law) from a room temperature plate to a sphere at T = 0 of radius
R = 5 µm (both SiO2), as a function of separation; the horizontal bar shows the limit d → ∞. The inset shows the result at large
separation as a function of R. (b) Precision results for the same geometry, sphere, and plate either of SiO2 (right abscissa) or SiC (left
abscissa), as a function of d . R is chosen very small (in the range of nanometers), so that the curve is only a function of d/R. Data points
show numerical results from partial waves expansion, and solid lines give the analytical result from Equation 40. The relative deviation
of numerical data to analytic curve is around 10−4. Data taken from References 24 and 128.

Proximity
approximation (PA):
expressing the result
for curved surfaces in
terms of the simpler
result for parallel
plates; exact in certain
limits

case of a sphere opposite a planar surface, with both made of glass (SiO2) (24). The radius of the
sphere is R = 5 µm, and we measure distance d between the closest points on the surfaces. Indeed,
for d  λT , the transferred energy approaches a distance-independent value. This value, although
obtained for large separations, is still a nontrivial function of radius R and is strongly reminiscent
of Figure 3: We see a regime where the transfer is proportional to the sphere’s volume, and for
R  λT , H is proportional to the sphere’s surface area, as expected. The value of H = σ T 4ε2(T )
(compare with Equation 39) is, however, not approached exactly.

In the continuum formulation, the heat transfer diverges with decreasing separation as 1/d .
From the experimental and technical perspective, it is important to understand the physical lim-
itations of this unbounded growth. Experimental deviations from the form of this divergence, as
predicted by FE, can provide valuable clues in this regard. The short distance divergence suggests
a proximity approximation (PA) dominated by contributions at closest separation. Indeed, despite
the fact that H is a complicated function of the parameters involved, the following analytical
expansion is valid if the sphere is small compared to the skin depth δ (128),

H(d ) = 2π Rλ

d

[
1 − (2β − 1)

d
R

log
d
d0

]
+ O(d 0). (40)

This curve is shown in Figure 4b with exact numerical data, which was obtained by expansion in
spherical waves and truncation at a multipole number of 2,500. The parameters α and β depend
on materials and temperature and were computed independently (not fitted) (128). The scheme
of PA (see also References 41, 43, and 129), which leads in general to results similar to Equation
40 (for cases where R � δ does not hold), has also proven useful in analysis of experimental data
as, for example, given in Figure 1b.
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Figure 5
(a) Numerical results for radiative energy transfer for three setups (see sketch, colors of curves corresponding to colors of the sketch).
Materials chosen are (marginally) different types of glass, and objects are at a temperature of 600 K, whereas the planar surface is kept at
300 K. (b) Spatially resolved heat transfer flux as a function of lateral position x on the planar surface. The dashed curve is for the
cylinder, whereas the colored solid curves depict the cone at different opening angles. Surface-surface separation is 70 nm in all cases,
and curves are normalized to a maximum of unity. Adapted from Reference 44 with permission.

Figure 5 shows radiative heat transfer between a planar surface and three different generic
compact objects, a sphere, a cylinder, and a cone (44). These results were obtained from a numer-
ical scattering scheme, where the surfaces are discretized and meshed. The value for the sphere
approaches a 1/d law, in agreement with Equation 40, whereas the result for the cylinder asymp-
totically diverges with 1/d 2, which is also in agreement with the PA. By contrast, the transfer
between the plate and the sharp cone has a much less pronounced divergence; the numerics are
consistent with a logarithmic dependence on d for small d . This is also in qualitative agreement
with the PA. In panel b, the energy flux (Poynting flux) is shown in a spatially resolved manner, as
a function of lateral position on the surface. This quantity gives the relative local heating strength
of the surface, which may be important for thermal writing applications. The cylinder shows the
expected result that the local heating is almost a step function with width corresponding to the
diameter of the cylinder. An unexpected observation is made for the cone (which is the more
dominant, the sharper the cone): The region right below the tip is actually a local minimum,
whereas the maximal heat is absorbed a distance away from the center. This means that the hot
cone, when brought close to the surface, does not heat the surface on a localized spot but rather
on a ring around its tip: Although the tip is the point closest to the surface, the cone seems to emit
energy predominantly on its side, so that the competition of these effects leads to the displaced
maximum. Heat transfer in the cone plate geometry was measured in a recent experiment (37).

5.3. Casimir Force

For systems out of equilibrium, forces acting on the objects are also quite distinct from their equi-
librium counterparts. The general features are demonstrated in Figure 6, where we show the forces
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Figure 6
Nonequilibrium forces between two spheres (radii R = 1 µm, made of SiO2) at center-to-center distance d ,
at temperatures as given. The environment is at 0 K, and only the black curve describes a global equilibrium
state. Curves show the force acting on sphere 2, which is not equal and opposite to the force acting on the
first sphere. Solid lines show attraction; dashed lines show repulsion. Four noticeable characteristics are
marked with numbers. Adapted from Reference 6 with permission.

Force in equilibrium:

F eq = 161
4π

�c
d8 α1α2

Force in equilibrium,
finite temperature:

F eq = 18�c
d7λT

α1α2

on two spheres at large separation. In equilibrium, this limit is referred to as the Casimir Polder
regime (130). We note the following four remarkable differences to the case of equilibrium (6):

1. In equilibrium, the Casimir force between the spheres falls off with inverse distance to
the 8th power (at zero temperature) or the 7th power (at finite temperature). If out of
equilibrium, i.e., if the temperatures of the two spheres and the environment are not all
equal, the behavior is drastically altered, and the force decays much slower, with the inverse
distance to the second power (see Figure 6,�). This may be understood by contemplating
the radiation pressure from photons.

2. The sign of the force, always attractive in equilibrium, can take either sign out of equilibrium.
In the graph, we indicate repulsive forces by dashed lines, and attractive ones with solid lines.
The� denotes a regime where the force is repulsive.

3. In equilibrium, the Casimir force does not allow stable points; it is forbidden by a strict
theorem (131). Also in this respect nonequilibrium is less restrictive: For a certain tem-
perature combination, the force changes its sign several times, indicating that positions of
zero force exist. Naturally, in every second zero, the force changes from repulsive to attrac-
tive; such points thus exhibit stability with a minimum at the corresponding potential. (See
Figure 6,�.)

4. The graph shows the force acting on sphere 2 (Figure 6, �) for different combinations
of temperatures. We first note that the forces on the spheres are generally not equal and
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Figure 7
Casimir levitation. (a) A hot sphere (T s = 900 K) is placed above a surface at room temperature. The panel shows the total force,
including gravity, which, at a certain range of distances d , is repulsive. (b) The panel gives the trajectory of the sphere if dropped from a
height of d = 800 nm: The sphere bounces on the surface, a motion eventually cut off by the cooling of the sphere. The red curve
includes this effect, and the red envelope around the curve gives the temperature difference between the sphere and the surface in
arbitrary units. Because the trajectory is distinctly different in equilibrium (the curve labeled T s = 300 K), such a setup may provide an
interesting manifestation of levitation due to out-of-equilibrium Casimir forces. Data taken from Reference 17.

opposite (as they are in equilibrium). This is possible, as photons that travel to, or come
from, the surrounding environment carry momentum so that the forces on all objects in
the system (including emitted and absorbed photons) still add up to zero. But staying with
the example of a cold sphere (0 K) and a warm sphere (300 K) is illustrative, as then, the force
acting on the cold one and the force acting on the warm one cross at d ≈ 6 µm (Figure 6,
�), where the forces acting on the two are equal in magnitude. The directions of forces
are also equal, so that the cold sphere is repelled while the warm sphere is attracted. In
this configuration, the spheres will thus start traveling in the same direction, keeping their
distance constant, representing a self-propelled pair. Self propulsion through Casimir forces
has been investigated in more detail in Reference 132.

Figure 6 demonstrates the general features of nonequilibrium Casimir forces and differences
compared to equilibrium counterparts. However, the experimental measurement of the forces
remains challenging, as they mostly dominate the total force at somewhat larger distances, d ≈ λT ,
and are hence often overshadowed by the equilibrium forces. In Figure 7, we analyze a setup with
potential experimental measurability (17): Here, a sphere (temperature 900 K) above a surface
(temperature 300 K) is considered; both are made of a dielectric material and described by a
typical Lorentz form (see Reference 17, p. 24 for details). Here, another pronounced difference
of nonequilibrium phenomena compared to equilibrium ones comes into play: In equilibrium
(mathematically apparent through the evaluation on the imaginary axis), the frequency dependence
of the dielectric functions enters in a broadband manner, whereas out of equilibrium, resonances
are important. As such, it is for example possible to tune the nonequilibrium force from attractive

www.annualreviews.org • Heat Radiation, Heat Transfer, and Force 139

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
7.

8:
11

9-
14

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

75
.1

04
.6

5.
17

2 
on

 0
3/

03
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CO08CH07-Kardar ARI 21 February 2017 8:55

to repulsive, by just tuning such resonances, especially, their relative positions (17, 87, 133, 134).
This has been done (again, see Reference 17, p. 24, for details) so that the sphere feels the total
force depicted in the left-hand side of the graph. The total force includes the gravitational force
and the Casimir force which are opposite in direction. For decreasing d , the Casimir force, due to
nonequilibrium, is repulsive, acting against gravity, and, around ≈0.7 µm, balances it. For smaller
d , the total force is repulsive. For even smaller d , the equilibrium part of the force will eventually
take over and render the total force attractive again. Nevertheless, at the zero force point around
d ≈ 0.7 µm, the sphere is in a local potential minimum. To make this statement even more obvious,
we have in the right-hand graph shown various trajectories of the sphere, if initially at d = 800 nm
(with zero velocity): The sphere will perform an oscillatory motion around the potential minimum,
as illustrated. However, this curve gives an over-idealized situation, as in reality, the sphere will
cool down, due to radiative heat transfer to the surface and the environment (predominantly to
the surface). This effect is included in the red curve, showing that with decreasing temperature,
the repulsive force weakens, and the sphere eventually drops on the surface. Here, width of the red
envelope around the curve gives the temperature difference between the sphere and the surface in
arbitrary units. Interestingly, the relaxation time of temperature, around 1 ms, is on the same order
of magnitude as the period of positional oscillations of the sphere. Thus, the trajectory appears
experimentally measurable, and most importantly, is distinctly different from the trajectory at
equilibrium (as shown). Here, the Casimir force is attractive throughout, and, boosted by gravity,
the sphere rapidly drops to the surface.

6. PERSPECTIVE

In this review we employed scattering theory along with Rytov’s FE to describe and gain insights
into several aspects of near-field heat radiation, heat transfer, and Casimir forces. There are
certainly myriad applications of these results in submicron-scale devices, and precise experimental
verification of nonequilibrium Casimir forces is lacking. There are, however, several avenues for
future theoretical investigation:

� As noted in Section 2, a central assumption of Rytov’s FE is that of local thermal equilibrium
for each object. However, in real systems where temperatures of objects and environment
differ substantially (e.g., hot objects in cold environment), the assumption of temperature
homogeneity within each object is questionable. Hence, it would be of both theoretical and
practical importance to extend the results to nonhomogeneous temperatures, taking into
account material heat conductivities.

� Section 5 employed bulk dielectric functions to compute heat radiation and nonequilibrium
Casimir forces at scales of tens of nanometres relevant to nanofibers. To justify the approach,
it is necessary to find out how accurately bulk dielectric properties apply at small scales. At
scales of a few angstroms, atomistic (band structure) calculations are likely needed, whereas
at intermediate scales a wave number–dependent dielectric response may be sufficient.

� The problem of determining the correct magnitude of the thermal contribution to the
Casimir force between two metallic plates is still waiting for a definitive resolution after
twenty years of efforts. Although a theoretical resolution of the conundrum might require a
fully microscopic quantum mechanical theory of fluctuation forces for conduction electrons,
perhaps along the lines of Reference 76, it is hoped that an experimental clarification may
be within reach based on a recently proposed differential measurement scheme (62–67).

� The computations described here rely heavily on the linear response of the bodies. It is
interesting to generalize the result to the case of nonlinear EM response. Perturbative
computations along this line are currently underway.
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132. Müller B, Krüger M. 2016. Phys. Rev. A 93:032505
133. Henkel C, Joulain K, Mulet JP, Greffet JJ. 2002. J. Opt. A: Pure Appl. Opt. 4:S109
134. Cohen AE, Mukamel S. 2003. Phys. Rev. Lett. 91:233202

www.annualreviews.org • Heat Radiation, Heat Transfer, and Force 143

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
7.

8:
11

9-
14

3.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

75
.1

04
.6

5.
17

2 
on

 0
3/

03
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



CO08-FrontMatter ARI 23 February 2017 12:7

Annual Review
of Condensed
Matter Physics

Volume 8, 2017Contents

My Career as a Theoretical Physicist—So Far
J.S. Langer � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1

Quantum Hall Effect: Discovery and Application
Klaus von Klitzing � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �13

Arnold Sommerfeld and Condensed Matter Physics
Christian Joas and Michael Eckert � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �31

Ratchet Effects in Active Matter Systems
C.J. Olson Reichhardt and C. Reichhardt � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �51

Sticky-Sphere Clusters
Miranda Holmes-Cerfon � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �77

Elastocapillarity: Surface Tension and the Mechanics of Soft Solids
Robert W. Style, Anand Jagota, Chung-Yuen Hui, and Eric R. Dufresne � � � � � � � � � � � � � � � �99

Nonequilibrium Fluctuational Quantum Electrodynamics:
Heat Radiation, Heat Transfer, and Force
Giuseppe Bimonte, Thorsten Emig, Mehran Kardar, and Matthias Krüger � � � � � � � � � � � � 119
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